Low Temperature Electronics for Space and Terrestrial Applications

Richard L. Patterson

NASA Glenn Research Center MS 309-2 Cleveland, OH 44135 Richard.L.Patterson@grc.nasa.gov

Scott S. Gerber

ZIN Engineering NASA Glenn Research Center Cleveland, OH 44135 Scott.S.Gerber@grc.nasa.gov

Eric Overton

NASA Glenn Research Center MS- 301-5 Cleveland, OH 44135 <u>Eric.Overton1@grc.nasa.gov</u>

Ahmad Hammoud

QSS Group NASA Glenn Research Center Cleveland, OH 44135 Ahmad.Hammoud@grc.nasa.gov

Malik Elbuluk

University of Akron Electrical & Computer Engineering Dept. Akron, OH 44325 melbuluk@uakron.edu

John Dickman

NASA Glenn Research Center MS 302-2 Cleveland, OH 44135 John.Dickman@grc.nasa.gov

OUTLINE

- 1. Deep Space Temperature Requirements And Applications
- 2. Terrestrial Applications
- 2. Low Temperature Electronics at NASA GRC
- 3. Power Electronic Components, Circuits and Systems
- 4. Selected Results

Temperature Data for Planetary Missions

Distance from Sun	Spacecraft Temperature (Sphere, Abs. = 1, Emiss. = 1 Internal Power = 0)	
Mercury	448 K 175 °C	
Venus	328 K 55 °C	
Earth	279 K 6 °C	
Mars	226 K -47 °C	
Jupiter	122 K -151 °C	
Saturn	90 K -183 °C	
Uranus	64 K -209 °C	
Neptune	51 K -222 °C	
Pluto	44 K -229 °C	

Deep Space Electronics Temperature Requirements

Requirements

- Electronics Capable of Low Temperature Operation
- High Reliability and Long Life Time
- Improved Energy Density and System Efficiency

Benefits of Low Temperature Electronics

- Survive Deep Space Hostile Cold Environments
- Eliminate Radioisotope and Conventional Heating Units
- Improve System Reliability by Simplified Thermal Management
- Reduce Overall Spacecraft Mass Resulting in Lower Launch Costs

Low Temperature Electronics Program

Goals

- Provide a technology base for the development of lightweight electronic components and systems capable of low temperature operation with long lifetimes
- Develop and characterize state-of-the-art components which operate at low temperatures
- Integrate advanced components into mission-specific low temperature circuits and systems
- Establish low temperature electronic database and transfer technology to mission groups

Space Applications of Low Temperature Electronics

- Mars 2003 Lander/Rover
- Mars Flyer
- JWST (NGST)
- Pluto Flyby
- Jupiter Probe

JAMES WEBB SPACE TELESCOPE (formerly NGST)

Glenn Research Center

at Lewis Field

L2 Point – Location of JWST

4 June 2003

This is an illustration of the L2 point showing the distance between the L2 and the Sun, compared to the distance between Earth and the Sun.

Credits: ESA

Terrestrial Applications of Low Temperature Electronics

- SMES
- ICARUS
- AMANDA / ICE BURG
- Magnetic Levitation

SMES Superconducting Magnetic Energy Storage

- An energy storage system, used by electric utilities, to stabilize voltages on power grids
- The energy storage device is about the size of a small number of 55 gallon drums
- Typical energy storage is about 1 MegaJoule
- System is mobile and about the size of a truck trailer
- Used by the Tennessee Valley Authority, PacifiCorp, Wisconsin Public Service, Scotland's Orkney Islands, and an aluminum foundry in Austria

ICARUS

Imaging Cosmic and Rare Underground Signals

- A neutrino detector (no charge and very little mass)
- A large tank of liquid argon (-180 °C)
- Needs some electronic components to operate at (-180 °C)
- Located inside a mountain in northern Italy

ICARUS

Amanda and Ice Cube Neutrino Detection System

Glenn Research Center

at Lewis Field

ICE CUBE NEUTRINO SENSOR SYSTEM Ice Cube Sensor Configuration

AMANDA / ICE CUBE PHOTOMULTIPLIER SENSOR

Glenn Research Center

at Lewis Field

AMANDA NEUTRINO DETECTION SYSTEM Inserting One Sensor into the Melted Hole

Glenn Research Center

at Lewis Field

Low Temperature Electronics Program

Facilities

- Three environmental chambers
 - Programmable rate for thermal cycling and long term soaking
 - Simultaneous and automated operation
 - Temp range from -193 °C to +250C
- Ultra-low temperature environmental chamber for electronic testing to 20K
- Instrumentation to evaluate digital and analog circuits
- Computer controlled CV/IV semiconductor device characterization
- Inframetrix infrared camera system
- Multiple high voltage, HIGH current source measure units
- Two programmable precision RLC instruments
- Surface and volume resistivity chamber, film dielectric and capacitance test fixture, breakdown voltage test cell
- Passive components high-power test circuitry

Facilities

Commercial Off-the-Shelf 12-Bit Serial CMOS Analog-to-Digital Converter (Rated for Operation Between –40 °C and +85 °C)

Digital Outputs at Three Temperatures for Various Analog Inputs

Analog	Digital	Digital	Digital
Input	Output (V)	Output (V)	Output (V)
(V)	@ 25 °C	@ -100 °C	@ -190 °C
0	0.007	0.010	0.010
0.5	0.505	0.498	0.508
1	1.004	1.006	1.004
2	2.000	2.002	1.993
5	4.994	4.994	5.001
7.25	7.241	7.228	7.226
10	9.983	9.963	9.963
10.1	10.000	10.000	10.000

FACILITIESDigital to Analog Test Setup

Low Temperature Electronics Program Products

Components

Magnetic Devices: Inductors & Transformers
Capacitors
Semiconductor Switches
Batteries
Transducers

Circuits

DC/DC Converters
A/D Converters
Oscillators
PWM Control Circuits
Other ICs

Systems

Energy Storage
Power Conditioning
Communication & Control

Normalized Output Frequency for Three Oscillators at Low Temperatures

Output Voltage of a DC/DC Converter at Various Temperatures

Output Voltage of Another DC/DC Converter At Various Low Temperatures

EXPERIMENTAL SETUP & RESULTS

COMMERCIAL DC-DC CONVERTER MODULES

• SPECIFICATIONS

Module	Input Voltage (V)	Output Voltage (V)	Power (W)	Operating Temp (°C)
1	9 –36	3.3	10	-40 to 60
2	36-72	3.3	10	-40 to 85
3	18-36	3.3	10	-40 to 70
4	18-36	3.3	13	-40 to 85
5	9-36	3.3	10	-40 to 85

• TEST TEMPERATURE RANGE: 20°C to -190°C

• TEST PARAMETERS:

- INPUT VOLTAGE: 9-72V - LOAD CURRENT: 0 - 3.0 A

• MEASURED PARAMETERS:

- EFFICIENCY

- OUTPUT VOLTAGE REGULATION

- CURRENT RIPPLE CHARACTERISTICS

EVALUATION SUMMARY OF SOME DC/DC CONVERTERS

Converter Specifications			cification	S	GRC Evaluations	
Mod #	Input Voltage (V)	Output Voltage (V)	Power (W)	Operating Temp. (°C)	Observations & Comments	Ceased Operation at (°C)
1	9 –36	3.3	10	-40 to 60	V₀ dropped to 2.4 V at −140 °C; chip functioned down to −160 °C.	-160
2	36-72	3.3	10	-40 to 85	V₀ lost regulation at −100 °C; converter still functioned to −196 °C.	-196
3	18-36	3.3	10	-40 to 70	Chip worked very well down to -120 °C. Input current oscillations occurred at all temperatures under heavy loading.	-120
4	18-36	3.3	13	-40 to 85	Oscillations in input current started at -80 °C.	-120
5	9-36	3.3	10	-40 to 85	Oscillations in input current observed at – 140 °C under heavy loading.	-180

Output Waveforms of a Pulse Width Modulation Controller At Room Temperature and -190 °C

CAPACITORS

CAPACITORS (Continued)

LEAKAGE CURRENT (nA)

Type	Unaged (RT)	Aged (RT)	In LN2
Polypropylene 1	1.80	1.20	0.02
Polypropylene 2	8.30	2.45	1.20
Polypropylene 3	9.50	5.00	0.06
Polycarbonate	3.20	2.64	0.14
Mica	7.10	10.80	0.10
Solid Tantalum	27.50	22.60	0.08

NASA Langley Laminated Flexible Printed Circuit Board

JAMES WEBB SPACE TELESCOPE MOTOR CONTROLLER

STEPPER MOTOR CONTROLLER / SELECTOR SEMICONDUCTORS FOR USE AT ULTRALOW TEMPERATURES

Switching Characteristics of a MOSFET Device At Various Temperatures <u>Before</u> Cycling

Switching Characteristics of a MOSFET Device At Various Temperatures <u>After</u> Cycling

CONCLUSIONS

- LOW TEMPERATURE ELECTRONICS APPLICATIONS
 - > DEEP SPACE MISSIONS
 - > SATELLITES
 - > CRYOGENIC INSTRUMENTATION
- CAN COMPONENTS SURVIVE?
 - > EXTREME TEMPERATURES
 - > HARSH ENVIRONMENTS
- NEED TO SATISFY :
 - > COMPACTNESS
 - > REDUCED WEIGHT
 - > RELIABILITY
 - > INCREASED EFFICIENCY

CONCLUSIONS (Continued)

- COTS COMPONENTS, DEVICES, CIRCUITS AND SYSTEMS HAVE BEEN CHARACTERIZED AT LOW TEMPERATURES
 - > NEED-BASED
 - > TECHNOLOGY-BASED
 - > TEMPERATURE RANGE BEYOND SPECIFICATIONS (-40°C OR -55°C)
- ADVANCED COMPONENTS ARE INTEGRATED INTO MISSION-SPECIFIC LOW TEMPERATURE CIRCUITS AND SYSTEMS
 - > MODIFY EXISTING
 - DEVELOP NEW TECHNOLOGIES

